The p-adic valuation of k-central binomial coefficients
نویسندگان
چکیده
منابع مشابه
THE p-ADIC VALUATION OF k-CENTRAL BINOMIAL COEFFICIENTS
The coefficients c(n, k) defined by (1− kx) = X n≥0 c(n, k)x reduce to the central binomial coefficients `
متن کاملBINOMIAL COEFFICIENTS AND THE RING OF p-ADIC INTEGERS
Let k > 1 be an integer and let p be a prime. We show that if pa k < 2pa or k = paq + 1 (with q < p/2) for some a = 1, 2, 3, . . ., then the set { (n k ) : n = 0, 1, 2, . . .} is dense in the ring Zp of p-adic integers; i.e., it contains a complete system of residues modulo any power of p.
متن کاملThe 2-adic Valuation of the Coefficients of a Polynomial
from which it follows that dl(m) is a rational number with only a power of 2 in its denominator. Extensive calculations have shown that, with rare exceptions, the numerators of dl(m) contain a single large prime divisor and its remaining factors are very small. For example d6(30) = 2 12 · 7 · 11 · 13 · 17 · 31 · 37 · 639324594880985776531. Similarly, d10(200) has 197 digits with a prime factor ...
متن کامل0812 . 3089 BINOMIAL COEFFICIENTS AND THE RING OF p - ADIC INTEGERS
Let k > 1 be an integer and let p be a prime. We show that if p a k < 2p a or k = p a q + 1 (with 2q p) for some a = 1, 2, 3,. .. , then the set { ` n k ´ : n = 0, 1, 2,. .. } is dense in the ring Z p of p-adic integers, i.e., it contains a complete system of residues modulo any power of p.
متن کاملOn P,q-binomial Coefficients
In this paper, we develop the theory of a p, q-analogue of the binomial coefficients. Some properties and identities parallel to those of the usual and q-binomial coefficients will be established including the triangular, vertical, and the horizontal recurrence relations, horizontal generating function, and the orthogonality and inverse relations. The construction and derivation of these result...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Arithmetica
سال: 2009
ISSN: 0065-1036,1730-6264
DOI: 10.4064/aa140-1-2