The numerical range of elementary operators II

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the decomposable numerical range of operators

 ‎Let $V$ be an $n$-dimensional complex inner product space‎. ‎Suppose‎ ‎$H$ is a subgroup of the symmetric group of degree $m$‎, ‎and‎ ‎$chi‎ :‎Hrightarrow mathbb{C} $ is an irreducible character (not‎ ‎necessarily linear)‎. ‎Denote by $V_{chi}(H)$ the symmetry class‎ ‎of tensors associated with $H$ and $chi$‎. ‎Let $K(T)in‎ (V_{chi}(H))$ be the operator induced by $Tin‎ ‎text{End}(V)$‎. ‎Th...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

on the decomposable numerical range of operators

‎let $v$ be an $n$-dimensional complex inner product space‎. ‎suppose‎ ‎$h$ is a subgroup of the symmetric group of degree $m$‎, ‎and‎ ‎$chi‎ :‎hrightarrow mathbb{c} $ is an irreducible character (not‎ ‎necessarily linear)‎. ‎denote by $v_{chi}(h)$ the symmetry class‎ ‎of tensors associated with $h$ and $chi$‎. ‎let $k(t)in‎ (v_{chi}(h))$ be the operator induced by $tin‎ ‎text{end}(v)$‎. ‎the...

متن کامل

Numerical Range of Lie Product of Operators

Denote by W (A) the numerical range of a bounded linear operator A, and [A, B] = AB −BA the Lie product of two operators A and B. Let H, K be complex Hilbert spaces of dimension ≥ 2 and Φ : B(H) → B(K) be a map whose range contains all operators of rank ≤ 1. It is shown that Φ satisfies that W ([Φ(A), Φ(B)]) = W ([A, B]) for any A, B ∈ B(H) if and only if dim H = dim K, there exist ε ∈ {1,−1}, ...

متن کامل

Product of Operators and Numerical Range

We show that a bounded linear operator A ∈ B(H) is a multiple of a unitary operator if and only if AZ and ZA always have the same numerical radius or the same numerical range for all (rank one) Z ∈ B(H). More generally, for any bounded linear operators A,B ∈ B(H), we show that AZ and ZB always have the same numerical radius (resp., the same numerical range) for all (rank one) Z ∈ B(H) if and on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2001

ISSN: 0024-3795

DOI: 10.1016/s0024-3795(01)00389-5