The numerical range of a nonnegative matrix
نویسندگان
چکیده
منابع مشابه
The numerical range of a nonnegative matrix
We offer an almost self-contained development of Perron–Frobenius type results for the numerical range of an (irreducible) nonnegative matrix, rederiving and completing the previous work of Issos, Nylen and Tam, and Tam and Yang on this topic. We solve the open problem of characterizing nonnegative matrices whose numerical ranges are regular convex polygons with center at the origin. Some relat...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولMaximal nonnegative perturbation of a nonnegative matrix
is known to be stable if and only if ρ(A) < 1. Models of real world dynamical phenomena often involve positive quantities. A dynamical system (1) is called positive if any trajectory of the system starting in the positive orthant R+ remains in R+. In this case, the matrix A has only real positive entries. In many cases, it may be useful to consider systems with a known “nominal” part A and a un...
متن کاملWhen is the numerical range of a nilpotent matrix circular?
The problem formulated in the title is investigated. The case of nilpotent matrices of size at most 4 allows a unitary treatment. The numerical range of a nilpotent matrix M of size at most 4 is circular if and only if the traces trM M and trM M are null. The situation becomes more complicated as soon as the size is 5. The conditions under which a 5 5 nilpotent matrix has circular numerical ran...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2002
ISSN: 0024-3795
DOI: 10.1016/s0024-3795(02)00291-4