The number of labeled k-trees

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Number of Independent Dominating Sets of Labeled Trees

We count the numbers of independent dominating sets of rooted labeled trees, ordinary labeled trees, and recursive trees, respectively.

متن کامل

On the Number of Genus One Labeled Circle Trees

A genus one labeled circle tree is a tree with its vertices on a circle, such that together they can be embedded in a surface of genus one, but not of genus zero. We define an e-reduction process whereby a special type of subtree, called an e-graph, is collapsed to an edge. We show that genus is invariant under e-reduction. Our main result is a classification of genus one labeled circle trees t...

متن کامل

A Bijective Proof for the Number of Labeled q-Trees

We giv e a bijective proof that the number of vertex labeled q-trees on n vertices is given by   n q   [ q n − q + 1 ] n − q − 2 . The bijection transforms each pair ( S , f ) where S is a q-element subset of an n-set, and f is a function mapping an ( n − q − 2 )-set to a ( q n − q + 1 )-set into a labeled q-tree on n nodes by a cutand-paste process. As a special case, q = 1 yields a new bi...

متن کامل

On the Number of Labeled k-arch Graphs

In this paper we deal with k-arch graphs, a superclass of trees and k-trees. We give a recursive function counting the number of labeled k-arch graphs. Our result relies on a generalization of the well-known Prüfer code for labeled trees. In order to guarantee the generalized code to be a bijection, we characterize the valid code strings. A previous attempt at counting the number of labeled k-a...

متن کامل

Counting the number of spanning trees of graphs

A spanning tree of graph G is a spanning subgraph of G that is a tree. In this paper, we focus our attention on (n,m) graphs, where m = n, n + 1, n + 2, n+3 and n + 4. We also determine some coefficients of the Laplacian characteristic polynomial of fullerene graphs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory

سال: 1969

ISSN: 0021-9800

DOI: 10.1016/s0021-9800(69)80119-5