The Noor integral operator and strongly close-to-convex functions
نویسندگان
چکیده
منابع مشابه
The Komatu Integral Operator and Strongly Close-to-convex Functions
In this paper we introduce some new subclasses of strongly closeto-convex functions de ned by using the Komatu integral operator and study their inclusion relationships with the integral preserving properties. Theorem[section] [theorem]Lemma [theorem]Proposition [theorem]Corollary Remark
متن کاملHigher order close-to-convex functions associated with Attiya-Srivastava operator
In this paper, we introduce a new class$T_{k}^{s,a}[A,B,alpha ,beta ]$ of analytic functions by using a newly defined convolution operator. This class contains many known classes of analytic and univalent functions as special cases. We derived some interesting results including inclusion relationships, a radius problem and sharp coefficient bound for this class.
متن کاملJensen’s Operator Inequality for Strongly Convex Functions
We give a Jensen’s operator inequality for strongly convex functions. As a corollary, we improve Hölder-McCarthy inequality under suitable conditions. More precisely we show that if Sp (A) ⊂ I ⊆ (1,∞), then 〈Ax, x〉 r ≤ 〈Ax, x〉 − r − r 2 (
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2003
ISSN: 0022-247X
DOI: 10.1016/s0022-247x(03)00270-1