The γ-neighborhood graph

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Common Neighborhood Graph

Let G be a simple graph with vertex set {v1, v2, … , vn}. The common neighborhood graph of G, denoted by con(G), is a graph with vertex set {v1, v2, … , vn}, in which two vertices are adjacent if and only if they have at least one common neighbor in the graph G. In this paper, we compute the common neighborhood of some composite graphs. In continue, we investigate the relation between hamiltoni...

متن کامل

The Common Neighborhood Graph and Its Energy

Let $G$ be a simple graph with vertex set ${v_1,v_2,ldots,v_n}$. The common neighborhood graph (congraph) of $G$, denoted by $con(G)$, is the graph with vertex set ${v_1,v_2,ldots,v_n}$, in which two vertices are adjacent if and only they have at least one common neighbor in the graph $G$. The basic properties of $con(G)$ and of its energy are established.

متن کامل

Characteristics of Common Neighborhood Graph under Graph Operations and on Cayley Graphs

Let G(V;E) be a graph. The common neighborhood graph (congraph) of G is a graph with vertex set V , in which two vertices are adjacent if and only if they have a common neighbor in G. In this paper, we obtain characteristics of congraphs under graph operations; Graph :::::union:::::, Graph cartesian product, Graph tensor product, and Graph join, and relations between Cayley graphs and its c...

متن کامل

The neighborhood complex of a random graph

For a graph G, the neighborhood complex N [G] is the simplicial complex having all subsets of vertices with a common neighbor as its faces. It is a well-known result of Lovász that if ‖N [G]‖ is k-connected, then the chromatic number of G is at least k + 3. We prove that the connectivity of the neighborhood complex of a random graph is tightly concentrated, almost always between 1/2 and 2/3 of ...

متن کامل

Graph Cospectrality using Neighborhood Matrices

In this note we address the problem of graph isomorphism by means of eigenvalue spectra of different matrix representations: the neighborhood matrix M̂ , its corresponding signless Laplacian QM̂ , and the set of higher order adjacency matrices M`s. We find that, in relation to graphs with at most 10 vertices, QM̂ leads to better results than the signless Laplacian Q; besides, when combined with M̂ ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Geometry

سال: 1992

ISSN: 0925-7721

DOI: 10.1016/0925-7721(92)90003-b