The moment problem for continuous positive semidefinite linear functionals

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The K-moment Problem for Continuous Linear Functionals

Given a closed (and non necessarily compact) basic semialgebraic set K ⊆ R, we solve the K-moment problem for continuous linear functionals. Namely, we introduce a weighted l1-norm lw on R[x], and show that the lw-closures of the preordering P and quadratic module Q (associated with the generators of K) is the cone Psd(K) of polynomials nonnegative on K. We also prove that P and Q solve the K-m...

متن کامل

A moment problem for pseudo-positive definite functionals

A moment problem is presented for a class of signed measures which are termed pseudo-positive. Our main result says that for every pseudopositive definite functional (subject to some reasonable restrictions) there exists a representing pseudo-positive measure. The second main result is a characterization of determinacy in the class of equivalent pseudo-positive representation measures. Finally ...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

An Inequality for Linear Positive Functionals

Using P0-simple functionals, we generalise the result from Theorem 1.1 obtained by Professor F. Qi (F. QI, An algebraic inequality, RGMIA Res. Rep. Coll., 2(1) (1999), article 8).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Archiv der Mathematik

سال: 2012

ISSN: 0003-889X,1420-8938

DOI: 10.1007/s00013-012-0460-5