The Modified Simple Equation Method and the Exact Solutions for the sine-Gordon Equation and the Generalized Variable-Coefficient KdV-mKdV Equation
نویسندگان
چکیده
منابع مشابه
Exact solutions to the sine-Gordon equation
A systematic method is presented to provide various equivalent solution formulas for exact solutions to the sine-Gordon equation. Such solutions are analytic in the spatial variable x and the temporal variable t, and they are exponentially asymptotic to integer multiples of 2π as x → ±∞. The solution formulas are expressed explicitly in terms of a real triplet of constant matrices. The method p...
متن کاملApplication of the Kudryashov method and the functional variable method for the complex KdV equation
In this present work, the Kudryashov method and the functional variable method are used to construct exact solutions of the complex KdV equation. The Kudryashov method and the functional variable method are powerful methods for obtaining exact solutions of nonlinear evolution equations.
متن کاملExact and Solitary Wave Solutions to the Generalized Fifth-order KdV Equation by Using the Modified Simple Equation Method
Although the modified simple equation (MSE) method effectively provides exact traveling wave solutions to nonlinear evolution equations (NLEEs) in the field of engineering and mathematical physics, it has some limitations. When the balance number is greater than one, usually the method does not give any solution. In this article, we have exposed a process how to implement the MSE method to solv...
متن کاملNew Exact Solutions of a Variable-coefficient Mkdv Equation
In this paper, negatons, positons and complexiton solutions of higher order for a non-isospectral MKdV equation, the MKdV equation with loss and nonuniformity terms are obtained through the bilinear Bäcklund transformation. AMS Subject Classification: 35Q53
متن کاملThe smoothed particle hydrodynamics method for solving generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system
A meshless numerical technique is proposed for solving the generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system with electromagnetic fields. The employed meshless technique is based on a generalized smoothed particle hydrodynamics (SPH) approach. The spatial direction has been discretized with the generalized SPH technique. Thus, we obtain a system of ordinary...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Applied Mathematics
سال: 2016
ISSN: 2324-7991,2324-8009
DOI: 10.12677/aam.2016.53055