The M\"{o}bius algebra as a Burnside ring

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The slice Burnside ring and the section Burnside ring of a finite group

This paper introduces two new Burnside rings for a finite group G, called the slice Burnside ring and the section Burnside ring. They are built as Grothendieck rings of the category of morphisms of G-sets, and of Galois morphisms of G-sets, respectively. The well known results on the usual Burnside ring, concerning ghost maps, primitive idempotents, and description of the prime spectrum, are ex...

متن کامل

The extended Burnside ring and module categories

In this note an ‘extended Burnside ring’ is defined, generated by classes of semisimple module categories over Rep(G) with quasifibre functors. Here G is a finite group and representations are taken over an algebraically closed field of characteristic 0. It is shown that this is equivalent to a ring generated by centrally extended G-sets and hence the name. Ring homomorphisms into the multiplic...

متن کامل

A Note on the Λ-structure on the Burnside Ring

Let G be a finite group and let S be a G-set. The Burnside ring of G has a natural structure of a λ-ring, {λn}n∈N. However, a priori λ (S) can only be computed recursively, by first computing λ(S), . . . , λ(S). In this paper we establish an explicit formula, expressing λ(S) as a linear combination of classes of G-sets.

متن کامل

A Note on the Λ-structure on the Burnside Ring

Let G be a finite group and let S be a G-set. The Burnside ring of G has a natural structure of a λ-ring, {λ}n∈N. However, a priori λn(S), where S is a G-set, can only be computed recursively, by first computing λ1(S), . . . , λn−1(S). In this paper we establish an explicit formula, expressing λn(S) as a linear combination of classes of G-sets.

متن کامل

The Generalized Burnside Ring and the K–theory of a Ring with Roots of Unity

Determining the algebraic K-theory of rings of integers in number fields has been the goal of much research. In [10] D. Quillen showed that the Hurewicz map h : Q0(S ) → BGL(Z) (see 1.1 for the notation) induces an interesting map on homotopy groups from the stable homotopy groups of spheres to the algebraic K-theory of the ring Z of rational integers. Quillen observed that if ` is an odd prime...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Hokkaido Mathematical Journal

سال: 1984

ISSN: 0385-4035

DOI: 10.14492/hokmj/1381757708