The middle annihilator conjecture for embeddable rings

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Auslander-Reiten Conjecture for Group Rings

This paper studies the vanishing of $Ext$ modules over group rings. Let $R$ be a commutative noetherian ring and $ga$ a group. We provide a criterion under which the vanishing of self extensions of a finitely generated $Rga$-module $M$ forces it to be projective. Using this result, it is shown that $Rga$ satisfies the Auslander-Reiten conjecture, whenever $R$ has finite global dimension and $ga...

متن کامل

On annihilator ideals in skew polynomial rings

This article examines annihilators in the skew polynomial ring $R[x;alpha,delta]$. A ring is strongly right $AB$ if everynon-zero right annihilator is bounded. In this paper, we introduce and investigate a particular class of McCoy rings which satisfy Property ($A$) and the conditions asked by P.P. Nielsen. We assume that $R$ is an ($alpha$,$delta$)-compatible ring, and prove that, if $R$ is ni...

متن کامل

Rings with Annihilator Chain Conditions and Right Distributive Rings

We prove that if a right distributive ring R, which has at least one completely prime ideal contained in the Jacobson radical, satisfies either a.c.c or d.c.c. on principal right annihilators, then the prime radical of R is the right singular ideal of R and is completely prime and nilpotent. These results generalize a theorem by Posner for right chain rings.

متن کامل

Finite Groups Embeddable in Division Rings

In [He], Herstein conjectured that odd-order subgroups of division rings K were cyclic, and he proved this to be the case when K is the division ring of the real quaternions. Herstein’s conjecture was settled negatively in [Am]. As part of his complete classification of finite groups in division rings, Amitsur showed that the smallest noncyclic odd-order group that can be embedded in a division...

متن کامل

Notes on Annihilator Conditions in Modules over Commutative Rings

Let M be a module over the commutative ring R. In this paper we introduce two new notions, namely strongly coprimal and super coprimal modules. Denote by ZR(M) the set of all zero-divisors of R on M . M is said to be strongly coprimal (resp. super coprimal) if for arbitrary a, b ∈ ZR(M) (resp. every finite subset F of ZR(M)) the annihilator of {a, b} (resp. F ) in M is non-zero. In this paper w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1988

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1988-0938642-1