The method of lower and upper solutions for n th-order periodic boundary value problems

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periodic Boundary Value Problems and Periodic Solutions of Second Order FDE with Upper and Lower Solutions∗

We use the monotone iterative technique with upper and lower solutions in reversed order to obtain two monotone sequences that converge uniformly to extremal solutions of second order periodic boundary value problems and periodic solutions of functional differential equations(FDEs).

متن کامل

Upper and Lower Solutions Method for Fourth-order Periodic Boundary Value Problems

The purpose of this paper is to prove the existence of a solution of the following periodic boundary value problem ( u(t) = f(t, u(t), u′′(t)), t ∈ [0, 2π] u(0) = u(2π), u′(0) = u′(2π), u′′(0) = u′′(2π), u′′′(0) = u′′′(2π) in the presence of an upper solution β and a lower solution α with β ≤ α, where f(t, u, v) satisfies one side Lipschitz condition.

متن کامل

Positive solutions of $n$th-order $m$-point boundary value problems

‎In this paper‎, ‎by using four functionals fixed point theorem‎, ‎we obtain sufficient conditions for the existence of‎ ‎at least one positive solution of an $n$th-order $m$-point boundary value problem‎. ‎As an application‎, ‎we give an example to demonstrate our main result.

متن کامل

On Second Order Periodic Boundary-value Problems with Upper and Lower Solutions in the Reversed Order

In this paper, we study the differential equation with the periodic boundary value u′′(t) = f(t, u(t), u′(t)), t ∈ [0, 2π] u(0) = u(2π), u′(0) = u′(2π). The existence of solutions to the periodic boundary problem above with appropriate conditions is proved by using an upper and lower solution method.

متن کامل

The Method of Lower and Upper Solutions for nth – Order Periodic Boundary Value

In this paper we develop the monotone method in the presence of lower and upper solutions for the problem u(t) = f(t, u(t));u(a) − u(b) = λi ∈ R; i = 0, ..., n− 1. Where f is a Carathéodory function. We obtain sufficient conditions in f to guarantee the existence and approximation of solutions between a lower solution α and an upper solution β for n ≥ 3 either α ≤ β or α ≥ β. For this, we study...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Mathematics and Stochastic Analysis

سال: 1994

ISSN: 1048-9533,1687-2177

DOI: 10.1155/s1048953394000043