The maximum modulus principle for CR functions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Maximum Principle for Harmonic Functions

Some generalizations of the maximum principle for harmonic functions are discussed. §

متن کامل

The modulus of continuity of analytic functions and CR- geometry

1 Introduction Contour and solid modulus of continuity. The one-dimensional case There has been an extensive study of the relation between the " contour " and the " solid " moduli of continuity for analytic functions in planar domains, starting with the following beautiful result of Hardy and Littlewood. For a domain G in C n (n ≥ 1) we denote as usual by A(G) the algebra of analytic functions ...

متن کامل

A Sneaky Proof of the Maximum Modulus Principle

A proof for the maximum modulus principle (in the unit disc) is presented. This proof is unusual in that it is based on linear algebra. The goal of this note is to provide a neat proof of the following version of the maximum modulus principle. Theorem 1 Let f be a function analytic in a neighborhood of the closed unit disc D = {z ∈ C : |z| ≤ 1}. Then max z∈D |f(z)| = max z∈∂D |f(z)|. (Here and ...

متن کامل

Sharp Estimates for the Maximum over Minimum Modulus of Rational Functions

Let m, n ≥ 0, λ > 1, and R be a rational function with numerator, denominator of degree ≤ m,n, respectively. In several applications, one needs to know the size of the set S ⊂ [0, 1] such that for r ∈ S, max |z|=r |R (z)| / min |z|=r |R (z)| ≤ λ. In an earlier paper, we showed that meas (S) ≥ 1 4 exp ( − 13 log λ ) , where meas denotes linear Lebesgue measure. Here we obtain, for each λ, the sh...

متن کامل

The Pontryagin Maximum Principle

Theorem (PontryaginMaximum Principle). Suppose a final time T and controlstate pair (û, x̂) on [τ, T ] give the minimum in the problem above; assume that û is piecewise continuous. Then there exist a vector of Lagrange multipliers (λ0, λ) ∈ R × R with λ0 ≥ 0 and a piecewise smooth function p: [τ, T ] → R n such that the function ĥ(t) def =H(t, x̂(t), p(t), û(t)) is piecewise smooth, and one has ̇̂ ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1986

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1986-0822441-3