The Matsumoto-Yor property in free probability via subordination and Boolean cumulants

نویسندگان

چکیده

We study the Matsumoto-Yor property in free probability. prove three characterizations of free-GIG and Poisson distributions by freeness properties together with some assumptions about conditional moments. Our main tools are subordination Boolean cumulants. In particular, we establish a new connection between additive function

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Matsumoto–Yor property on trees

Viewing the Matsumoto–Yor property as a bivariate property with respect to the simple tree with two vertices and one edge, we extend it to a p-variate property with respect to any tree with p vertices. The converse of the Matsumoto–Yor property, which characterizes the product of a gamma and a generalized inverse Gaussian distribution, is extended to characterize the product of a gamma and p 1 ...

متن کامل

On the computation of classical, boolean and free cumulants

This paper introduces a simple and computationally efficient algorithm for conversion formulae between moments and cumulants. The algorithm provides just one formula for classical, boolean and free cumulants. This is realized by using a suitable polynomial representation of Abel polynomials. The algorithm relies on the classical umbral calculus, a symbolic language introduced by Rota and Taylor...

متن کامل

Subordination Problems Related to Free Probability

Our research project is in the area of noncommutative probability. Noncommutative probability emerged in the early ’80s as a very powerful tool for the study of finite operator algebras. The fundamental idea is to view a pair (A, τ), where A is a unital algebra over the complex numbers (usually endowed with a suitable norm topology), and τ is a linear, unit preserving, functional on A, as a non...

متن کامل

Differential subordination and argumental property

For analytic functions f (z) in the open unit disk E and convex functions g(z) in E, has proved one theorem which is a generalization of the result by K. Sakaguchi [K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan 11 (1959) 72–75]. The object of the present paper is to generalize the theorem due to Pommerenke.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ALEA-Latin American Journal of Probability and Mathematical Statistics

سال: 2022

ISSN: ['1980-0436']

DOI: https://doi.org/10.30757/alea.v19-55