The matrix sign decomposition and its relation to the polar decomposition
نویسندگان
چکیده
منابع مشابه
The Matrix Sign Decomposition and Its Relation to the Polar Decomposition
The sign function of a square matrix was introduced by Roberts in 1971. We show that it is useful to regard S = sign(A) as being part of a matrix sign decomposition A = SN, where N = (A ) ’ 1/z This decomposition leads to . the new representation sign(A) = A(A2)-‘i2. Most results for the matrix sign decomposition have a counterpart for the polar decomposition A = UH, and vice versa. To illustra...
متن کاملComputing the Polar Decomposition and the Matrix Sign Decomposition in Matrix Groups
For any matrix automorphism group G associated with a bilinear or sesquilinear form, Mackey, Mackey, and Tisseur have recently shown that the matrix sign decomposition factors of A ∈ G also lie in G; moreover, the polar factors of A lie in G if the matrix of the underlying form is unitary. Groups satisfying the latter condition include the complex orthogonal, real and complex symplectic, and ps...
متن کاملMatrix Animation and Polar Decomposition
General 3×3 linear or 4×4 homogenous matrices can be formed by composing primitive matrices for translation, rotation, scale, shear, and perspective. Current 3-D computer graphics systems manipulate and interpolate parametric forms of these primitives to generate scenes and motion. For this and other reasons, decomposing a composite matrix in a meaningful way has been a longstanding challenge. ...
متن کاملFinding the polar decomposition of a matrix by an efficient iterative method
Theobjective in this paper to study and present a new iterative method possessing high convergence order for calculating the polar decompostion of a matrix. To do this, it is shown that the new scheme is convergent and has high convergence. The analytical results are upheld via numerical simulations and comparisons.
متن کاملJoint Eigenvalue Decomposition Using Polar Matrix Factorization
In this paper we propose a new algorithm for the joint eigenvalue decomposition of a set of real non-defective matrices. Our approach resorts to a Jacobi-like procedure based on polar matrix decomposition. We introduce a new criterion in this context for the optimization of the hyperbolic matrices, giving birth to an original algorithm called JDTM. This algorithm is described in detail and a co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1994
ISSN: 0024-3795
DOI: 10.1016/0024-3795(94)90393-x