The $\mathbb Z_p$-rank of a topological $K$-group
نویسندگان
چکیده
منابع مشابه
THE Zp-RANK OF A TOPOLOGICAL K-GROUP
A complete two-dimensional local field K of mixed characteristic with finite second residue field is considered. It is shown that the rank of the quotient U(1)K 2 K/TK , where TK is the closure of the torsion subgroup, is equal to the degree of the constant subfield of K over Qp. Also, a basis of this quotient is constructed in the case where there exists a standard field L containing K such th...
متن کاملLattice of compactifications of a topological group
We show that the lattice of compactifications of a topological group $G$ is a complete lattice which is isomorphic to the lattice of all closed normal subgroups of the Bohr compactification $bG$ of $G$. The correspondence defines a contravariant functor from the category of topological groups to the category of complete lattices. Some properties of the compactification lattice of a topological ...
متن کاملOn cyclic codes over the ring $Z_p + uZ_p + ... + u^{k-1}Z_p$
In this paper, we study cyclic codes over the ring Z p + uZ p + · · · + u k−1 Z p , where u k = 0. We find a set of generator for these codes. We also study the rank, the dual and the Hamming distance of these codes.
متن کاملOne Cyclic Codes over $\mathbb{F}_{p^k} + v\mathbb{F}_{p^k} + v^2\mathbb{F}_{p^k} + ... + v^r\mathbb{F}_{p^k}$
In this paper, we investigate cyclic code over the ring Fpk + vFpk + v 2 Fpk + ...+ v r Fpk , where v = v, p a prime number, r > 1 and gcd(r, p) = 1, we prove as generalisation of [9] that these codes are principally generated, give generator polynomial and idempotent depending on idempotents over this ring as response to an open problem related in [11]. we also give a gray map and proprieties ...
متن کامل$(1-2u^k)$-constacyclic codes over $\mathbb{F}_p+u\mathbb{F}_p+u^2\mathbb{F}_+u^{3}\mathbb{F}_{p}+\dots+u^{k}\mathbb{F}_{p}$
Let $\mathbb{F}_p$ be a finite field and $u$ be an indeterminate. This article studies $(1-2u^k)$-constacyclic codes over the ring $\mathcal{R}=\mathbb{F}_p+u\mathbb{F}_p+u^2\mathbb{F}_p+u^{3}\mathbb{F}_{p}+\cdots+u^{k}\mathbb{F}_{p}$ where $u^{k+1}=u$. We illustrate the generator polynomials and investigate the structural properties of these codes via decomposition theorem.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: St. Petersburg Mathematical Journal
سال: 2009
ISSN: 1061-0022
DOI: 10.1090/s1061-0022-09-01062-0