The Maslov Index: a Functional Analytical Definition and the Spectral Flow Formula
نویسندگان
چکیده
منابع مشابه
The Spectral flow and the Maslov index
exist and have no zero eigenvalue. A typical example for A(t) is the div-grad-curl operator on a 3-manifold twisted by a connection which depends on t. Atiyah et al proved that the Fredholm index of such an operator DA is equal to minus the “spectral flow” of the family {A(t)}t∈R. This spectral flow represents the net change in the number of negative eigenvalues of A(t) as t runs from −∞ to ∞. ...
متن کاملOn a Spectral Flow Formula for the Homological Index
Consider a selfadjoint unbounded operator D on a Hilbert space H and a one parameter norm continuous family of selfadjoint bounded operators {A(t) | t ∈ R} that converges in norm to asymptotes A± at ±∞. Then under certain conditions [RoSa95] that include the assumption that the operators {D(t) = D + A(t), t ∈ R} all have discrete spectrum then the spectral flow along the path {D(t)} can be show...
متن کاملAn Extension of a Theorem of Nicolaescu on Spectral Flow and the Maslov Index
In this paper we extend a theorem of Nicolaescu on spectral flow and the Maslov index. We do this by studying the manifold of Lagrangian subspaces of a symplectic Hilbert space that are Fredholm with respect to a given Lagrangian L0. In particular, we consider the neighborhoods in this manifold of Lagrangians which intersect L0 nontrivially.
متن کاملComputation of the Maslov Index and the Spectral Flow via Partial Signatures
Given a smooth Lagrangian path, both in the finite and in the infinite dimensional (Fredholm) case, we introduce the notion of partial signatures at each isolated intersection of the path with the Maslov cycle. For real-analytic paths, we give a formula for the computation of the Maslov index using the partial signatures; a similar formula holds for the spectral flow of real-analytic paths of F...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tokyo Journal of Mathematics
سال: 1998
ISSN: 0387-3870
DOI: 10.3836/tjm/1270041982