منابع مشابه
The limitation of Bayesianism
In the current discussion about the capacity of Bayesianism in reasoning under uncertainty, there is a conceptual and notational confusion between the explicit condition and the implicit condition of a probability evaluation. Consequently, the limitation of Bayesianism is often seriously underestimated. To represent the uncertainty of a belief system where revision is needed, it is not enough t...
متن کاملOn the foundations of Bayesianism
We discuss precise assumptions entailing Bayesianism in the line of investigations started by Cox, and relate them to a recent critique by Halpern. We show that every finite model which cannot be rescaled to probability violates a natural and simple refinability principle. A new condition, separability, was found sufficient and necessary for rescalability of infinite models. We finally characte...
متن کاملFoundations of Bayesianism A Note on Foundations of Bayesianism
We discuss the justifications of Bayesianism by Cox and Jaynes, and relate them to a recent critique by Halpern(JAIR, vol 10(1999), pp 67–85). We show that a problem with Halperns example is that a finite and natural refinement of the model leads to inconsistencies, and that the same is the case with every model in which rescalability to probability cannot be done. We also discuss other problem...
متن کاملVarieties of Bayesianism
Loosely speaking, a Bayesian theory is any theory of non-deductive reasoning that uses the mathematical theory of probability to formulate its rules. Within this broad class of theories there is room for disagreement along several dimensions. There is much disagreement about exactly what the subject matter of such theories should be, i.e. about what the probabilities in these theories should be...
متن کاملThe Development of Subjective Bayesianism
The Bayesian approach to inductive reasoning originated in two brilliant insights. In 1654 Blaise Pascal, while in the course of a correspondence with Fermat [1769], recognized that states of uncertainty can be quantified using probabilities and expectations. In the early 1760s Thomas Bayes [1763] first understood that learning can be represented probabilistically using what is now called Bayes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Artificial Intelligence
سال: 2004
ISSN: 0004-3702
DOI: 10.1016/j.artint.2003.09.003