The Larson–Sweedler theorem for multiplier Hopf algebras
نویسندگان
چکیده
منابع مشابه
NOTES ON REGULAR MULTIPLIER HOPF ALGEBRAS
In this paper, we associate canonically a precyclic mod- ule to a regular multiplier Hopf algebra endowed with a group-like projection and a modular pair in involution satisfying certain con- dition
متن کاملOn the cyclic Homology of multiplier Hopf algebras
In this paper, we will study the theory of cyclic homology for regular multiplier Hopf algebras. We associate a cyclic module to a triple $(mathcal{R},mathcal{H},mathcal{X})$ consisting of a regular multiplier Hopf algebra $mathcal{H}$, a left $mathcal{H}$-comodule algebra $mathcal{R}$, and a unital left $mathcal{H}$-module $mathcal{X}$ which is also a unital algebra. First, we construct a para...
متن کاملBurnside's Theorem for Hopf Algebras
A classical theorem of Burnside asserts that if X is a faithful complex character for the finite group G, then every irreducible character of G is a constituent of some power Xn of X . Fifty years after this appeared, Steinberg generalized it to a result on semigroup algebras K[G] with K an arbitrary field and with G a semigroup, finite or infinite. Five years later, Rieffel showed that the the...
متن کاملnotes on regular multiplier hopf algebras
in this paper, we associate canonically a precyclic mod- ule to a regular multiplier hopf algebra endowed with a group-like projection and a modular pair in involution satisfying certain con- dition
متن کاملA ug 2 00 4 The Larson - Sweedler theorem for multiplier Hopf algebras
Any finite-dimensional Hopf algebra has a left and a right integral. Conversely, Larsen and Sweedler showed that, if a finite-dimensional algebra with identity and a comultiplication with counit has a faithful left integral, it has to be a Hopf algebra. In this paper, we generalize this result to possibly infinite-dimensional algebras, with or without identity. We have to leave the setting of H...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2006
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2005.11.020