The kernel of integral cup product
نویسندگان
چکیده
منابع مشابه
Cup product and intersection
This is a handout for my algebraic topology course. The goal is to explain a geometric interpretation of the cup product. Namely, if X is a closed oriented smooth manifold, if A and B are oriented submanifolds of X, and if A and B intersect transversely, then the Poincaré dual of A∩B is the cup product of the Poincaré duals of A and B. As an application, we prove the Lefschetz fixed point formu...
متن کاملA Modified Degenerate Kernel Method for the System of Fredholm Integral Equations of the Second Kind
In this paper, the system of Fredholm integral equations of the second kind is investigated by using a modified degenerate kernel method (MDKM). To construct a MDKM the source function is approximated by the same way of producing degenerate kernel. The interpolation is used to make the needed approximations. Lagrange polynomials are adopted for the interpolation. The equivalency of proposed m...
متن کاملThe modified degenerate kernel method for the multi-dimensional Fredholm integral equations of the second kind
In this paper, to investigate the multi-dimensional Fredholm integral equations of the second kind a modified degenerate kernel method is used. To construct the mentioned modified, the source function is approximated by the same method which employed to obtain a degenerate approximation of the kernel. The Lagrange interpolation method is used to make the needed approximations. The error and ...
متن کاملSolving integral equations of the third kind in the reproducing kernel space
A reproducing kernel Hilbert space restricts the space of functions to smooth functions and has structure for function approximation and some aspects in learning theory. In this paper, the solution of an integral equation of the third kind is constructed analytically using a new method. The analytical solution is represented in the form of series in the reproducing kernel space. Some numerical ...
متن کاملThe solving linear one-dimemsional Volterra integral equations of the second kind in reproducing kernel space
In this paper, to solve a linear one-dimensional Volterra integral equation of the second kind. For this purpose using the equation form, we have defined a linear transformation and by using it's conjugate and reproducing kernel functions, we obtain a basis for the functions space.Then we obtain the solution of integral equation in terms of the basis functions. The examples presented in this ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics
سال: 1987
ISSN: 0263-6115
DOI: 10.1017/s1446788700028913