The k-modes Algorithm with Entropy Based Similarity Coefficient

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rough K-modes Clustering Algorithm Based on Entropy

Cluster analysis is an important technique used in data mining. Categorical data clustering has received a great deal of attention in recent years. Some existing algorithms for clustering categorical data do not consider the importance of attributes for clustering, thereby reducing the efficiency of clustering analysis and limiting its application. In this paper, we propose a novel rough k-mode...

متن کامل

An Optimization K-Modes Clustering Algorithm with Elephant Herding Optimization Algorithm for Crime Clustering

The detection and prevention of crime, in the past few decades, required several years of research and analysis. However, today, thanks to smart systems based on data mining techniques, it is possible to detect and prevent crime in a considerably less time. Classification and clustering-based smart techniques can classify and cluster the crime-related samples. The most important factor in the c...

متن کامل

Machine Cell Formation Based on a New Similarity Coefficient

One of the designs of cellular manufacturing systems (CMS) requires that a machine population be partitioned into machine cells. Numerous methods are available for clustering machines into machine cells. One method involves using a similarity coefficient. Similarity coefficients between machines are not absolute, and they still need more attention from researchers. Although there are a number o...

متن کامل

Approaching Software Cost Estimation Using an Entropy-Based Fuzzy k-Modes Clustering Algorithm

A new software cost estimation approach is proposed in this paper, which attempts to cluster empirical, non-homogenous project data samples via an entropy-based fuzzy k-modes clustering algorithm. The target is to identify groups of projects sharing similar characteristics in terms of cost attributes or descriptors, and utilise this grouping information to provide estimations of the effort need...

متن کامل

The Laplacian K-modes algorithm for clustering

In addition to finding meaningful clusters, centroid-based clustering algorithms such as K-means or mean-shift should ideally find centroids that are valid patterns in the input space, representative of data in their cluster. This is challenging with data having a nonconvex or manifold structure, as with images or text. We introduce a new algorithm, Laplacian K-modes, which naturally combines t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Procedia Computer Science

سال: 2015

ISSN: 1877-0509

DOI: 10.1016/j.procs.2015.04.066