The Jacobson radical of commutative semigroup rings

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Nilpotency of the Jacobson Radical of Semigroup Rings

Munn [11] proved that the Jacobson radical of a commutative semigroup ring is nil provided that the radical of the coefficient ring is nil. This was generalized, for semigroup algebras satisfying polynomial identities, by Okniński [14] (cf. [15, Chapter 21]), and for semigroup rings of commutative semigroups with Noetherian rings of coefficients, by Jespers [4]. It would be interesting to obtai...

متن کامل

The Upper Nilradical and Jacobson Radical of Semigroup Graded Rings

Given a semigroup S, we prove that if the upper nilradical Nil∗(R) is homogeneous whenever R is an S-graded ring, then the semigroup S must be cancelative and torsion-free. In case S is commutative the converse is true. Analogs of these results are established for other radicals and ideals. We also describe a large class of semigroups S with the property that whenever R is a Jacobson radical ri...

متن کامل

On the Jacobson radical of strongly group graded rings

For any non-torsion group G with identity e, we construct a strongly G-graded ring R such that the Jacobson radical J(Re) is locally nilpotent, but J(R) is not locally nilpotent. This answers a question posed by Puczy lowski.

متن کامل

Commutative Subdirectly Irreducible Radical Rings

A ring R is radical if there is a ring S (with unit) such that R = J (S) (the Jacobson radical). We study the commutative subdirectly irreducible radical rings and show that such a ring is noetherian if and only if is finite. We present a reflection of the commutative radical rings into the category of the commutative rings and derive a lot of examples of the subdirectly irreducible radical rin...

متن کامل

Rings and Algebras the Jacobson Radical of a Semiring

The concept of the Jacobson radical of a ring is generalized to semirings. A semiring is a system consisting of a set S together with two binary operations, called addition and multiplication, which forms a semigroup relative to addition, a semigroup relative to multiplication, and the right and left distributive laws hold. The additive semigroup of S is assumed to be commutative. The right ide...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1992

ISSN: 0021-8693

DOI: 10.1016/s0021-8693(05)80037-7