The hexagonal chains with the extremal third-order Randić index

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Extremal Graphs for (Sum-) Balaban Index of Spiro and Polyphenyl Hexagonal Chains

As highly discriminant distance-based topological indices, the Balaban index and the sum-Balaban index of a graph $G$ are defined as $J(G)=frac{m}{mu+1}sumlimits_{uvin E} frac{1}{sqrt{D_{G}(u)D_{G}(v)}}$ and $SJ(G)=frac{m}{mu+1}sumlimits_{uvin E} frac{1}{sqrt{D_{G}(u)+D_{G}(v)}}$, respectively, where $D_{G}(u)=sumlimits_{vin V}d(u,v)$ is the distance sum of vertex $u$ in $G$, $m$ is the n...

متن کامل

A note on the zeroth-order general randić index of cacti and polyomino chains

The present note is devoted to establish some extremal results for the zeroth-order general Randi'{c} index of cacti, characterize the extremal polyomino chains with respect to the aforementioned index, and hence to generalize two already reported results.

متن کامل

Chain hexagonal cacti: extremal with respect to the eccentric connectivity index

In this paper we present explicit formulas for the eccentric connectivity index of three classes of chain hexagonal cacti. Further, it is shown that the extremal chain hexagonal cacti with respect to the eccentric connectivity index belong to one of the considered types. Some open problems and possible directions of further research are mentioned in the concluding section.

متن کامل

a note on the zeroth-order general randić index of cacti and polyomino chains

the present note is devoted to establish some extremal results for the zeroth-order general randi'{c} index of cacti, characterize the extremal polyomino chains with respect to the aforementioned index, and hence to generalize two already reported results.

متن کامل

Extremal k∗-Cycle Resonant Hexagonal Chains

Denote by B∗ n the set of all k∗-cycle resonant hexagonal chains with n hexagons. For any Bn ∈ B ∗ n , let m(Bn) and i(Bn) be the numbers of matchings (=the Hosoya index) and the number of independent sets (=the Merrifield-Simmons index) of Bn, respectively. In this paper, we give a characterization of the k∗-cycle resonant hexagonal chains, and show that for any Bn ∈ B ∗ n , m(Hn) ≤ m(Bn) and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics Letters

سال: 2009

ISSN: 0893-9659

DOI: 10.1016/j.aml.2009.07.012