The Great Emergence: An exposition

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Randomness Extractors – An Exposition

Randomness is crucial to computer science, both in theory and applications. In complexity theory, randomness augments computers to offer more powerful models. In cryptography, randomness is essential for seed generation, where the computational model used is generally probabilistic. However, ideal randomness, which is usually assumed to be available in computer science theory and applications, ...

متن کامل

An Exposition on the Chromatic Complex

1 The Chromatic Complex 2 1.1 The Chromatic Polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Quantum Dimension of Graded Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Categorification of the Chromatic Polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3.1 Enhanced States . . . . . . . . . . . . . . . . . . . ....

متن کامل

An Exposition on Inflationary Cosmology

This paper is intended to offer a pedagogical treatment of inflationary cosmology, which is accessible to undergraduates. In recent years, inflation has become accepted as a standard scenario making predictions that are testable by observations of the cosmic background. It is therefore manifest that anyone wishing to pursue the study of cosmology and large-scale structure should have this scena...

متن کامل

The Green-tao Theorem: an Exposition

The celebrated Green-Tao theorem states that the prime numbers contain arbitrarily long arithmetic progressions. We give an exposition of the proof, incorporating several simplifications that have been discovered since the original paper.

متن کامل

The (gowers-)balog-szemerédi Theorem: an Exposition

We briefly discuss here the Balog-Szemerédi theorem, compare its different versions and prove, following Gowers, the strongest one — also due to Gowers. 1. Discussion For a finite set A of elements of an abelian group and a group element s, by νA(s) we denote the number of representations of s as a sum of two elements of A: νA(s) = #{(a′, a′′) ∈ A× A : s = a′ + a′′}. We write 2A = {a′ + a′′ : a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: HTS Teologiese Studies / Theological Studies

سال: 2019

ISSN: 2072-8050,0259-9422

DOI: 10.4102/hts.v75i4.5398