The Gould-Hopper polynomials in the Novikov-Veselov equation

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-variable Gould-Hopper and Laguerre polynomials

The idea of monomiality traces back to the early forties of the last century, when J.F. Steffensen, in a largely unnoticed paper [1], suggested the concept of poweroid. A new interest in this subject was created by the work of G. Dattoli and his collaborators [2], [3] It turns out that all polynomial families, and in particular all special polynomials, are essentially the same, since it is poss...

متن کامل

Darboux transformation for the modified Veselov-Novikov equation

A Darboux transformation is constructed for the modified Veselov-Novikov equation .

متن کامل

Darboux Transformation and Variable Separation Approach: the Nizhnik-novikov-veselov Equation

Darboux transformation is developed to systematically find variable separation solutions for the Nizhnik-Novikov-Veselov equation. Starting from a seed solution with some arbitrary functions, the once Darboux transformation yields the variable separable solutions which can be obtained from the truncated Painlevé analysis and the twice Darboux transformation leads to some new variable separable ...

متن کامل

Absence of solitons with sufficient algebraic localization for the Novikov-Veselov equation at nonzero energy

and the corresponding evolution equation (1.1) were given in [NV1], [NV2], where equation (1.1) was also studied in the periodic setting. Solitons and the large time asymptotic behavior of sufficiently localized in space solutions for the Novikov-Veselov equation were studied in the series of works [GN1, G1, Nov2, K1, KN1, KN2, KN3]. In [KN1, K1] it was shown that in the regular case, i.e. when...

متن کامل

Absence of exponentially localized solitons for the Novikov–Veselov equation at negative energy

We show that Novikov–Veselov equation (an analog of KdV in dimension 2 + 1) does not have exponentially localized solitons at negative energy.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics

سال: 2011

ISSN: 0022-2488,1089-7658

DOI: 10.1063/1.3638043