The genus 2 Torelli group is not finitely generated

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

K g is not finitely generated

Let Σg be a closed orientable surface of genus g. The mapping class group Modg of Σg is defined to be the group of isotopy classes of orientationpreserving diffeomorphisms Σg → Σg. Recall that an essential simple closed curve γ in Σg is called a bounding curve, or separating curve, if it is nullhomologous in Σg or, equivalently, if γ separates Σg into two connected components. Let Kg denote the...

متن کامل

The Griffiths Group of a General Calabi-yau Threefold Is Not Finitely Generated

Fn−k+1H 2n−2k+1(X)∼= F n−k+1A2n−2k+1(X)c dFn−k+1A2n−2k(X) . If (Zt )t∈C is a flat family of codimension k algebraic cycles on X parametrized by a smooth irreducible curve C, the map t → kX(Zt − Z0) factors through a homomorphism from the Jacobian J (C) to J 2k−1(X), and one can show that the image of this morphism is a complex subtorus of J 2k−1(X) whose tangent space is contained in Hk−1,k(X) ...

متن کامل

The Kernel of the Magnus Representation of the Automorphism Group of a Free Group Is Not Finitely Generated

In this paper, we show that the abelianization of the kernel of the Magnus representation of the automorphism group of a free group is not finitely generated.

متن کامل

The Modular Group A Finitely Generated Group with Interesting Subgroups

The action of Möbius transformations with real coefficients preserves the hyperbolic metric in the upper half-plane model of the hyperbolic plane. The modular group is an interesting group of hyperbolic isometries generated by two Möbius transformations, namely, an order-two element, g2 HzL = -1 ê z, and an element of infinite order, g• HzL = z + 1. Viewing the action of the group elements on a...

متن کامل

An expansion of the Jones representation of genus 2 and the Torelli group

We study the algebraic property of the representation of the mapping class group of a closed oriented surface of genus 2 constructed by VFR Jones [9]. It arises from the Iwahori–Hecke algebra representations of Artin’s braid group of 6 strings, and is defined over integral Laurent polynomials Z[t, t] . We substitute the parameter t with −e , and then expand the powers e in their Taylor series. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 1986

ISSN: 0166-8641

DOI: 10.1016/0166-8641(86)90076-3