The First Syzygy of Hibi Rings Associated with Planar Distributive Lattices
نویسندگان
چکیده
In this article, we give explicit minimal generators of the first syzygy Hibi ring for a planar distributive lattice in terms sublattices. We also characterization when it is linearly related and derive an exact formula Betti number lattice.
منابع مشابه
Distributive Lattices of Jacobson Rings
We characterize the distributive lattices of Jacobson rings and prove that if a semiring is a distributive lattice of Jacobson rings, then, up to isomorphism, it is equal to the subdirect product of a distributive lattice and a Jacobson ring. Also, we give a general method to construct distributive lattices of Jacobson rings.
متن کاملRepresentation of algebraic distributive lattices with א 1 compact elements as ideal lattices of regular rings
We prove the following result: Theorem. Every algebraic distributive lattice D with at most א1 compact elements is isomorphic to the ideal lattice of a von Neumann regular ring R. (By earlier results of the author, the א1 bound is optimal.) Therefore, D is also isomorphic to the congruence lattice of a sectionally complemented modular lattice L, namely, the principal right ideal lattice of R. F...
متن کاملSingularities of Toric Varieties Associated with Finite Distributive Lattices
With each finite lattice L we associate a projectively embedded scheme V(L); as Hibi has shown, the lattice D is distributive if and only if V(D) is irreducible, in which case it is a toric variety. We first apply Birkhoff's structure theorem for finite distributive lattices to show that the orbit decomposition of V(D) gives a lattice isomorphic to the lattice of contractions of the bounded pos...
متن کاملDistributive Lattices of λ-simple Semirings
In this paper, we study the decomposition of semirings with a semilattice additive reduct. For, we introduce the notion of principal left $k$-radicals $Lambda(a)={x in S | a stackrel{l}{longrightarrow^{infty}} x}$ induced by the transitive closure $stackrel{l}{longrightarrow^{infty}}$ of the relation $stackrel{l}{longrightarrow}$ which induce the equivalence relation $lambda$. Again non-transit...
متن کاملDistributive lattices with strong endomorphism kernel property as direct sums
Unbounded distributive lattices which have strong endomorphism kernel property (SEKP) introduced by Blyth and Silva in [3] were fully characterized in [11] using Priestley duality (see Theorem 2.8}). We shall determine the structure of special elements (which are introduced after Theorem 2.8 under the name strong elements) and show that these lattices can be considered as a direct product of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta mathematica Vietnamica
سال: 2022
ISSN: ['0251-4184', '2315-4144']
DOI: https://doi.org/10.1007/s40306-021-00463-w