The fast Fourier transform recursive equations for arbitrary length records
نویسندگان
چکیده
منابع مشابه
Arbitrary-length Fast Hartley Transform without Multiplications
Discrete Hartley transform (DHT) is an important tool in digital signal processing. In this paper, a multilierless algorithm to compute discrete Hartley transforms is proposed, which can deal with arbitrary length input signals. The proposed algorithm can be implemented by integer additions of fixed points in binary system. Besides, an efficient and regular systolic array is designed to impleme...
متن کاملThe crystallographic fast Fourier transform. Recursive symmetry reduction.
Algorithms are presented for maximally efficient computation of the crystallographic fast Fourier transform (FFT). The approach is applicable to all 230 space groups and allows reduction of both the computation time and the memory usage by a factor equal to the number of symmetry operators. The central idea is a recursive reduction of the problem to a series of transforms on grids with no speci...
متن کاملThe Fast Fourier Transform
In the next two lectures, we will continue to expand our toolbox for computing in frequency domain, by adding two important computational tools. The first, the Fast Fourier Transform (FFT) is a family of algorithms for efficiently computing the Discrete Fourier Transform. These algorithms are of great practical importance, as theymake it possible to perform frequency domain analysis of very lar...
متن کاملFractional-Fourier-transform calculation through the fast-Fourier-transform algorithm.
A method for the calculation of the fractional Fourier transform (FRT) by means of the fast Fourier transform (FFT) algorithm is presented. The process involves mainly two FFT's in cascade; thus the process has the same complexity as this algorithm. The method is valid for fractional orders varying from -1 to 1. Scaling factors for the FRT and Fresnel diffraction when calculated through the FFT...
متن کاملFinite Fourier Transform, Circulant Matrices, and the Fast Fourier Transform
Suppose we have a function s(t) that measures the sound level at time t of an analog audio signal. We assume that s(t) is piecewise-continuous and of finite duration: s(t) = 0 when t is outside some interval a ≤ t ≤ b. Make a change of variable x = (t− a)/(b− a) and set f(x) = s(t). Then 0 ≤ x ≤ 1 when a ≤ t ≤ b, and f(x) is a piecewise continuous function of x. We convert f(x) into a digital s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 1967
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-1967-0223120-2