The Extended Tanh Method and the Exp-Function Method to Solve a Kind of Nonlinear Heat Equation
نویسندگان
چکیده
منابع مشابه
The Extended Tanh Method and the Exp-Function Method to Solve a Kind of Nonlinear Heat Equation
also known as the diffusion equation, describes in typical applications of the evolution in time of the density u u x, t of some quantities such as heat and chemical concentration 1, page 44 . In this case, the thermal diffusivity and thermal conductivity of the medium are assumed to be constant. However, in some media such as gases, the parameters are proportional to the temperature of the med...
متن کاملAPPLICATION OF EXP-FUNCTION METHOD TO THE (2+1)-DIMENSIONAL CALOGERO BOGOYAVLANSKII SCHIFF EQUATION
In this paper, the Exp-function method, with the aid of a symbolic computation system such as Maple, is applied to the (2+1) -dimensional Calogero Bogoyavlanskii Schiff equation. Exact and explicit generalized solitary solutions are obtained in more general forms. The free parameters can be determined by initial or boundary conditions. The method is straightforward and concise, and its applicat...
متن کاملThe tanh method for solutions of the nonlinear modied Korteweg de Vries equation
In this paper, we have studied on the solutions of modied KdV equation andalso on the stability of them. We use the tanh method for this investigationand given solutions are good-behavior. The solution is shock wave and can beused in the physical investigations
متن کاملThe modified extended tanh-function method and its applications to the generalized KdV-mKdV equation with any-order nonlinear terms
In this article we apply the modified extended tanh-function method to find the exact traveling wave solutions of the generalized KdV-mKdV equation with any order nonlinear terms. This method presents a wider applicability for handling many other nonlinear evolution equations in mathematical physics.
متن کاملAn Improved Modified Extended tanh-Function Method
In this paper we further improve the modified extended tanh-function method to obtain new exact solutions for nonlinear partial differential equations. Numerical applications of the proposed method are verified by solving the improved Boussinesq equation and the system of variant Boussinesq equations. The new exact solutions for these equations include Jacobi elliptic doubly periodic type, Weie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2010
ISSN: 1024-123X,1563-5147
DOI: 10.1155/2010/935873