The exponential cubic B-spline collocation method for the Kuramoto-Sivashinsky equation
نویسندگان
چکیده
منابع مشابه
Septic B-Spline Collocation Method for Numerical Solution of the Kuramoto-Sivashinsky Equation
In this paper the Kuramoto-Sivashinsky equation is solved numerically by collocation method. The solution is approximated as a linear combination of septic B-spline functions. Applying the Von-Neumann stability analysis technique, we show that the method is unconditionally stable. The method is applied on some test examples, and the numerical results have been compared with the exact solutions....
متن کاملOrthogonal cubic spline collocation method for the Cahn-Hilliard equation
The Cahn–Hilliard equation plays an important role in the phase separation in a binary mixture. This is a fourth order nonlinear partial differential equation. In this paper, we study the behaviour of the solution by using orthogonal cubic spline collocation method and derive optimal order error estimates. We discuss some computational experiments by using monomial basis functions in the spatia...
متن کاملCubic B-spline Collocation Method for Numerical Solution of the Benjamin-Bona-Mahony-Burgers Equation
In this paper, numerical solutions of the nonlinear Benjamin-Bona-Mahony-Burgers (BBMB) equation are obtained by a method based on collocation of cubic B-splines. Applying the Von-Neumann stability analysis, the proposed method is shown to be unconditionally stable. The method is applied on some test examples, and the numerical results have been compared with the exact solutions. The L∞ and L2 ...
متن کاملTrigonometric Cubic B-spline Collocation Method for Solitons of the Klein-Gordon Equation
In the present study, we derive a new B-spline technique namely trigonometric B-spline collocation algorithm to solve some initial boundary value problems for the nonlinear Klein-Gordon equation. In order to carry out the time integration with Crank-Nicolson implicit method, the order of the equation is reduced to give a coupled system of nonlinear partial differential equations. The collocatio...
متن کاملApplication of linear combination between cubic B-spline collocation methods with different basis for solving the KdV equation
In the present article, a numerical method is proposed for the numerical solution of the KdV equation by using a new approach by combining cubic B-spline functions. In this paper we convert the KdV equation to system of two equations. The method is shown to be unconditionally stable using von-Neumann technique. To test accuracy the error norms L2, L∞ are computed. Three invariants of motion are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2016
ISSN: 0354-5180,2406-0933
DOI: 10.2298/fil1603853e