The existence of UFO implies projectively universal morphisms
نویسندگان
چکیده
Let C \mathcal C be a concrete category. We prove that if {C} admits universally free object alttext="sans-serif F"> mathvariant="sans-serif">F encoding="application/x-tex">\mathsf F , then there is projectively universal morphism alttext="u colon sans-serif F right-arrow u : → Mor <!-- stretchy="false">( stretchy="false">) encoding="application/x-tex">\tau \in \operatorname {Mor}(B) exists an epimorphism alttext="pi comma π<!-- π <mml:mo>, encoding="application/x-tex">\pi {Mor}(\mathsf F, B) tau equals u pi"> = \tau = \pi . This builds upon extends various ideas by Darji Matheron [Proc. Amer. Math. Soc. 145 (2017), pp. 251–265] who proved result the category of separable Banach spaces with contractive operators as well certain classes dynamical systems on compact metric spaces. Specialising from our abstract setting, we conclude applies to categories spaces/lattices/algebras, C*-algebras, etc.
منابع مشابه
Existence of Natural and Projectively Equivariant Quantizations
We study the existence of natural and projectively equivariant quantizations for differential operators acting between order 1 vector bundles over a smooth manifold M . To that aim, we make use of the Thomas-Whitehead approach of projective structures and construct a Casimir operator depending on a projective Cartan connection. We attach a scalar parameter to every space of differential operato...
متن کاملPermanence Implies the Existence of Interior Periodic Solutions for FDEs
By appealing to the theory of global attractors and steady states for uniformly persistent dynamical systems, we show that uniform persistence implies the existence of interior periodic solutions for dissipative periodic functional differential equations of retarded and neutral type. This result is then applied to a multi-species competitive system and a SIS epidemic model. AMS Subject Classifi...
متن کاملThe disjunction property implies the numerical existence property.
Any recursively enumerable extension of intuitionistic arithmetic which obeys the disjunction property obeys the numerical existence property. Any recursively enumerable extension of intuitionistic arithmetic proves its own disjunction property if and only if it proves its own inconsistency.
متن کاملThe Universal Kolyvagin Recursion Implies the Kolyvagin Recursion
Let Uz be the universal norm distribution and M a fixed power of prime p, by using the double complex method employed by Anderson, we study the universal Kolyvagin recursion occurred in the canonical basis in the cohomology group H(Gz ,Uz/MUz). We furthermore show that the universal Kolyvagin recursion implies the Kolyvagin recursion in the theory of Euler systems. One certainly hopes this coul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2023
ISSN: ['2330-1511']
DOI: https://doi.org/10.1090/proc/16422