منابع مشابه
A continuous approximation fitting to the discrete distributions using ODE
The probability density functions fitting to the discrete probability functions has always been needed, and very important. This paper is fitting the continuous curves which are probability density functions to the binomial probability functions, negative binomial geometrics, poisson and hypergeometric. The main key in these fittings is the use of the derivative concept and common differential ...
متن کاملTravelling kinks in discrete φ 4 models
In recent years, three exceptional discretizations of the φ 4 model have been discovered [S97, BT97, K03] which support translationally invariant kinks, i.e., families of stationary kinks centered at arbitrary points between the lattice sites. We address the question of the persistence of these kinks for nonzero velocity. By computing the Stokes constants in beyond-all-order asymptotic expansio...
متن کاملthe study of bright and surface discrete cavity solitons dynamics in saturable nonlinear media
امروزه سالیتون ها بعنوان امواج جایگزیده ای که تحت شرایط خاص بدون تغییر شکل در محیط منتشر می-شوند، زمینه مطالعات گسترده ای در حوزه اپتیک غیرخطی هستند. در این راستا توجه به پدیده پراش گسسته، که بعنوان عامل پهن شدگی باریکه نوری در آرایه ای از موجبرهای جفت شده، ظاهر می گردد، ضروری است، زیرا سالیتون های گسسته از خنثی شدن پراش گسسته در این سیستم ها بوسیله عوامل غیرخطی بوجود می آیند. گسستگی سیستم عامل...
a continuous approximation fitting to the discrete distributions using ode
the probability density functions fitting to the discrete probability functions has always been needed, and very important. this paper is fitting the continuous curves which are probability density functions to the binomial probability functions, negative binomial geometrics, poisson and hypergeometric. the main key in these fittings is the use of the derivative concept and common differential ...
متن کاملExcess Error , Approximation Error , and Estimation Error
Another question of interest concerns the behaviour of a learning algorithm in the infinite sample limit: as it receives more and more data, does the algorithm converge to an optimal prediction rule, i.e. does the generalization error of the learned function approach the optimal error? Recall that for a distribution D on X × Y and a loss ` : Y × Y→[0,∞), the optimal error w.r.t. D and ` is the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical and Computer Modelling
سال: 2001
ISSN: 0895-7177
DOI: 10.1016/s0895-7177(01)00076-0