THE ERDŐS–SZEKERES PROBLEM FOR NON‐CROSSING CONVEX SETS

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

Note on noncrossing path in colored convex sets ∗

Consider a 2n element colored point set, n points red and n points blue, in convex position in the plane. Erdős asked to estimate the number of points in the longest noncrossing path such that edges join points of different color and are straight line segments. Kynčl, Pach and Tóth in 2008 gave a construction proving the upper bound 43n+ O( √ n). This bound is conjectured to be tight. For an ar...

متن کامل

The Bilinear Multiplier Problem for Strictly Convex Compact Sets

We study the question whether characteristic functions of strictly convex compact sets with smooth boundaries in R are L × L → L bounded bilinear Fourier multiplier operators on R × R. When n ≥ 2 we answer this question in the negative outside the local L case, i.e., when 1/p + 1/q = 1/r and 2 ≤ p, q, r′ <∞ fails. Our proof is based on a suitable adaptation of the Kakeya type construction emplo...

متن کامل

Sets, Lists and Noncrossing Partitions

Partitions of [n] = {1, 2, . . . , n} into sets of lists are counted by sequence A000262 in the On-Line Encyclopedia of Integer Sequences. They are somewhat less numerous than partitions of [n] into lists of sets, A000670. Here we observe that the former are actually equinumerous with partitions of [n] into lists of noncrossing sets and give a bijective proof. We show too that partitions of [n]...

متن کامل

Noncrossing sets and a Graßmann associahedron

We study a natural generalization of the noncrossing relation between pairs of elements in [n] to k-tuples in [n]. We show that the flag simplicial complex on ( [n] k ) induced by this relation is a regular, unimodular and flag triangulation of the order polytope of the poset given by the product [k]× [n− k] of two chains, and it is the join of a simplex and a sphere (that is, it is a Gorenstei...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematika

سال: 2014

ISSN: 0025-5793,2041-7942

DOI: 10.1112/s0025579314000072