The eigenvalue characterization for the constant sign Green’s functions of ( k , n − k ) $(k,n-k)$ problems
نویسندگان
چکیده
منابع مشابه
The eigenvalue Characterization for the constant Sign Green ’ s Functions of ( k , n − k ) problems
This paper is devoted to the study of the sign of the Green’s function related to a general linear n-order operator, depending on a real parameter, Tn[M ], coupled with the (k, n−k) boundary value conditions. If operator Tn[M̄ ] is disconjugate for a given M̄ , we describe the interval of values on the real parameter M for which the Green’s function has constant sign. One of the extremes of the i...
متن کاملPolarization constant $mathcal{K}(n,X)=1$ for entire functions of exponential type
In this paper we will prove that if $L$ is a continuous symmetric n-linear form on a Hilbert space and $widehat{L}$ is the associated continuous n-homogeneous polynomial, then $||L||=||widehat{L}||$. For the proof we are using a classical generalized inequality due to S. Bernstein for entire functions of exponential type. Furthermore we study the case that if X is a Banach space then we have t...
متن کاملpolarization constant $k(n,x)=1$ for entire functions of exponential type
in this paper we will prove that if $l$ is a continuous symmetric n-linear form on a hilbert spaceand $widehat{l}$ is the associated continuous n-homogeneous polynomial, then $||l||=||widehat{l}||$.for the proof we are using a classical generalized inequality due to s. bernstein for entire functions of exponential type. furthermore we study the case that if x is a banach space then we have tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Boundary Value Problems
سال: 2016
ISSN: 1687-2770
DOI: 10.1186/s13661-016-0547-1