The eigenstructure of an arbitrary polynomial matrix: computational aspects
نویسندگان
چکیده
منابع مشابه
Involutiveness of linear combinations of a quadratic or tripotent matrix and an arbitrary matrix
In this article, we characterize the involutiveness of the linear combination of the forma1A1 +a2A2 when a1, a2 are nonzero complex numbers, A1 is a quadratic or tripotent matrix,and A2 is arbitrary, under certain properties imposed on A1 and A2.
متن کاملComputational aspects of multivariate polynomial interpolation
The paper is concerned with the practical implementation of two methods to compute the solution of polynomial interpolation problems. In addition to a description of the implementation, practical results and several improvements will be discussed, focusing on speed and robustness of the algorithms under consideration.
متن کاملEla the Behaviour of the Complete Eigenstructure of a Polynomial Matrix under a Generic Rational Transformation
Given a polynomial matrix P (x) of grade g and a rational function x(y) = n(y)/d(y), where n(y) and d(y) are coprime nonzero scalar polynomials, the polynomial matrix Q(y) := [d(y)]P (x(y)) is defined. The complete eigenstructures of P (x) and Q(y) are related, including characteristic values, elementary divisors and minimal indices. A theorem on the matter, valid in the most general hypotheses...
متن کاملextensions of some polynomial inequalities to the polar derivative
توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی
15 صفحه اولAlgebraic adjoint of the polynomials-polynomial matrix multiplication
This paper deals with a result concerning the algebraic dual of the linear mapping defined by the multiplication of polynomial vectors by a given polynomial matrix over a commutative field
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1983
ISSN: 0024-3795
DOI: 10.1016/0024-3795(83)90069-1