The Dyer-Lashof algebra and the $\Lambda$-algebra

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Split Dual Dyer-Lashof Operations

For each admissible monomial of Dyer-Lashof operations QI , we define a corresponding natural function Q̂I :TH̄∗(X) → H ∗(ΩnΣnX), called a Dyer-Lashof splitting. For every homogeneous class x in H∗(X), a Dyer-Lashof splitting Q̂I determines a canonical element y in H∗(ΩnΣnX) so that y is connected to x by the dual homomorphism to the operation QI . The sum of the images of all the admissible Dyer-...

متن کامل

The Aluffi Algebra and Linearity Condition

The Aluffi algebra is an algebraic version of characteristic cycles in intersection theory which is an intermediate graded algebra between the symmetric algebra (naive blowup) and the Rees algebra (blowup). Let  R be a commutative Noetherian ring and J ⊂I  ideals of R. We say that J ⊂I  satisfy linearity condition if the Aluffi algebra of I/J is isomorphic with the symmetric algebra. In this pa...

متن کامل

Dyer-Lashof-Cohen operations in Hochschild cohomology

In the paper we give explicit formulae for operations in Hochschild cohomology which are analogous to the operations in the homology of double loop spaces. As a corollary we obtain that any brace algebra in finite characteristics is always a restricted Lie algebra.

متن کامل

Periodicity in the Periodic Lambda Algebra

The periodic lambda algebra is a co-Koszul complex of the Steenrod algebra whose homology gives the E2 term for the Adams spectral sequence. Its elements are closely related to periodic homotopy theory, and exhibit periodic properties. In this paper we discuss an algorithm to compute the homology of the periodic lambda algebra, and investigate the algebraic structure for the E2 page of the vn p...

متن کامل

DYER-LASHOF OPERATIONS IN if-THEORY

Dyer-Lashof operations were first introduced by Araki and Kudo in [1] in order to calculate ü*(QS+; Z2). These operations were later used by Dyer and Lashof to determine H*(QY;ZP) as a functor of H*(Y;ZP) [5], where QY = | J n H n E n y . This has had many important applications. Hodgkin and Snaith independently defined a single secondary operation in if-homology (for p odd and p = 2 respective...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Illinois Journal of Mathematics

سال: 1975

ISSN: 0019-2082

DOI: 10.1215/ijm/1256050812