The Diophantine equation x⁴ - Dy² = 1, II

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Diophantine Equation x4 ± y4 = iz2 in Gaussian Integers

The Diophantine equation x4 ± y4 = z2, where x, y and z are integers was studied by Fermat, who proved that there exist no nontrivial solutions. Fermat proved this using the infinite descent method, proving that if a solution can be found, then there exists a smaller solution (see for example [1], Proposition 6.5.3). This was the first particular case proven of Fermat’s Last Theorem (which was ...

متن کامل

THE DIOPHANTINE EQUATION x2+2k =yn, II

New results regarding the full solution of the diophantine equationx2+2k=yn in positive integers are obtained. These support a previous conjecture, without providing a complete proof.

متن کامل

ON THE DIOPHANTINE EQUATION xn − 1 x −

We prove that if (x, y, n, q) 6= (18, 7, 3, 3) is a solution of the Diophantine equation (xn−1)/(x−1) = y with q prime, then there exists a prime number p such that p divides x and q divides p − 1. This allows us to solve completely this Diophantine equation for infinitely many values of x. The proofs require several different methods in diophantine approximation together with some heavy comput...

متن کامل

On the Diophantine equation |axn - byn | = 1

If a, b and n are positive integers with b ≥ a and n ≥ 3, then the equation of the title possesses at most one solution in positive integers x and y, with the possible exceptions of (a, b, n) satisfying b = a + 1, 2 ≤ a ≤ min{0.3n, 83} and 17 ≤ n ≤ 347. The proof of this result relies on a variety of diophantine approximation techniques including those of rational approximation to hypergeometri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 1997

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa-78-4-401-403