The diameter of random graphs

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Diameter of Random Graphs

Extending some recent theorems of Klee and Larman, we prove rather sharp results about the diameter of a random graph. Among others we show that if d = d(n) > 3 and m = m(n) satisfy (log n)/d 3 log log n -> oo, 2rf_Imd'/'nd+x log n -» oo and dd~2md~l/nd — log n -» -oo then almost every graph with n labelled vertices and m edges has diameter d. About twenty years ago Erdös [7], [8] used random g...

متن کامل

On the Diameter of Random Planar Graphs

We show that the diameter D(Gn) of a random labelled connected planar graph with n vertices is asymptotically almost surely of order n1/4, in the sense that there exists a constant c > 0 such that P (D(Gn) ∈ (n1/4− , n )) ≥ 1− exp(−n ) for small enough and n large enough (n ≥ n0( )). We prove similar statements for rooted 2-connected and 3-connected maps and planar graphs.

متن کامل

The Diameter of Sparse Random Graphs

We consider the diameter of a random graph G(n, p) for various ranges of p close to the phase transition point for connectivity. For a disconnected graph G, we use the convention that the diameter of G is the maximum diameter of its connected components. We show that almost surely the diameter of random graph G(n, p) is close to log n log(np) if np → ∞. Moreover if np log n = c > 8, then the di...

متن کامل

On the Diameter of Hyperbolic Random Graphs

Large real-world networks are typically scale-free. Recent research has shown that such graphs are described best in a geometric space. More precisely, the internet can be mapped to a hyperbolic space such that geometric greedy routing performs close to optimal (Boguná, Papadopoulos, and Krioukov. Nature Communications, 1:62, 2010). This observation pushed the interest in hyperbolic networks as...

متن کامل

The Diameter of Random Sparse Graphs

Abstract We consider the diameter of a random graph G(n, p) for various ranges of p close to the phase transition point for connectivity. For a disconnected graph G, we use the convention that the diameter of G is the maximum diameter of its connected components. We show that almost surely the diameter of random graph G(n, p) equals (1 + o(1)) log n log(np) if np → ∞. Moreover if np log n = c >...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1981

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1981-0621971-7