The Cut-off Phenomenon for Brownian Motions on Compact Symmetric Spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Limiting behaviors of the Brownian motions on hyperbolic spaces

Abstract: By adopting the upper half space realizations of the real, complex and quaternionic hyperbolic spaces and solving the corresponding stochastic differential equations, we can represent the Brownian motions on these classical families of the hyperbolic spaces as explicit Wiener functionals. Using the representations, we show that the almost sure convergence of the Brownian motions and t...

متن کامل

A Poisson Structure on Compact Symmetric Spaces

We present some basic results on a natural Poisson structure on any compact symmetric space. The symplectic leaves of this structure are related to the orbits of the corresponding real semisimple group on the complex flag manifold.

متن کامل

Proper Motions in Compact Symmetric Objects

We discuss recent measurements of proper motions of the hotspots of Compact Symmetric Objects. Source expansion has been detected in ten CSOs so far and all these objects are very young (≤ 3 × 10 3 years). In a few sources ages have also been estimated from energy supply and spectral ageing arguments and these estimates are comparable. This argues that these sources are close to equiparti-tion ...

متن کامل

Modulation Spaces, Wiener Amalgam Spaces, and Brownian Motions

We study the local-in-time regularity of the Brownian motion with respect to localized variants of modulation spaces M s and Wiener amalgam spaces W p,q s . We show that the periodic Brownian motion belongs locally in time to M s (T) and W p,q s (T) for (s − 1)q < −1, and the condition on the indices is optimal. Moreover, with the Wiener measure μ on T, we show that (M s (T), μ) and (W p,q s (T...

متن کامل

Vafa-witten Estimates for Compact Symmetric Spaces

We give an optimal upper bound for the first eigenvalue of the untwisted Dirac operator on a compact symmetric space G/H with rkG− rkH ≤ 1 with respect to arbitrary Riemannian metrics. We also prove a rigidity statement. Herzlich gave an optimal upper bound for the lowest eigenvalue of the Dirac operator on spheres with arbitrary Riemannian metrics in [9] using a method developed by Vafa and Wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Potential Analysis

سال: 2013

ISSN: 0926-2601,1572-929X

DOI: 10.1007/s11118-013-9356-7