The correspondence between augmentations and rulings for Legendrian knots

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Correspondence between Augmentations and Rulings for Legendrian Knots

We strengthen the link between holomorphic and generatingfunction invariants of Legendrian knots by establishing a formula relating the number of augmentations of a knot’s contact homology to the complete ruling invariant of Chekanov and Pushkar.

متن کامل

Rulings of Legendrian knots as spanning surfaces

Each ruling of a Legendrian link can be naturally treated as a surface. For knots, the ruling is 2–graded if and only if the surface is orientable. For 2–graded rulings of homogeneous (in particular, alternating) knots, we prove that the genus of this surface is at most the genus of the knot. While this is not true in general, we do prove that the canonical genus (a.k.a. diagram genus) of any k...

متن کامل

Legendrian and Transversal Knots

Contact structures on manifolds and Legendrian and transversal knots in them are very natural objects, born over two centuries ago, in the work of Huygens, Hamilton and Jacobi on geometric optics and work of Lie on partial differential equations. They touch on diverse areas of mathematics and physics, and have deep connections with topology and dynamics in low dimensions. The study of Legendria...

متن کامل

Satellites of Legendrian Knots and Representations of the Chekanov–eliashberg Algebra

We study satellites of Legendrian knots in R and their relation to the Chekanov–Eliashberg differential graded algebra of the knot. In particular, we generalize the well-known correspondence between rulings of a Legendrian knot in R and augmentations of its DGA by showing that the DGA has finite-dimensional representations if and only if there exist certain rulings of satellites of the knot. We...

متن کامل

Legendrian and Transverse Twist Knots

In 1997, Chekanov gave the first example of a Legendrian nonsimple knot type: the m(52) knot. Epstein, Fuchs, and Meyer extended his result by showing that there are at least n different Legendrian representatives with maximal Thurston–Bennequin number of the twist knot K−2n with crossing number 2n+1. In this paper we give a complete classification of Legendrian and transverse representatives o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 2006

ISSN: 0030-8730

DOI: 10.2140/pjm.2006.224.141