The Connes embedding problem: A guided tour

نویسندگان

چکیده

The Connes embedding problem (CEP) is a in the theory of tracial von Neumann algebras and asks whether or not every algebra embeds into an ultrapower hyperfinite II 1 _1 factor. CEP has had interactions with wide variety areas mathematics, including mathvariant="normal">C ? encoding="application/x-tex">\mathrm {C}^* -algebra theory, geometric group free probability, noncommutative real algebraic geometry, to name few. After remaining open for over 40 years, negative solution was recently obtained as corollary landmark result quantum complexity known alttext="upper M I P asterisk Baseline equals R E"> MIP = RE encoding="application/x-tex">\operatorname {MIP}^*=\operatorname {RE} . In these notes, we introduce all background material necessary understand proof from fact, outline two such proofs, one following “traditional” route that goes via Kirchberg’s QWEP Tsirelson’s information second uses basic ideas logic.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Connes ’ embedding problem and Tsirelson ’ s problem

We show that Tsirelson’s problem concerning the set of quantum correlations and Connes’ embedding problem on finite approximations in von Neumann algebras (known to be equivalent to Kirchberg’s QWEP conjecture) are essentially equivalent. Specifically, Tsirelson’s problem asks whether the set of bipartite quantum correlations generated between tensor product separated systems is the same as the...

متن کامل

Computability and the Connes Embedding Problem

The Connes Embedding Problem (CEP) asks whether every separable II1 factor embeds into an ultrapower of the hyperfinite II1 factor. We show that the CEP is equivalent to the statement that every type II1 tracial von Neumann algebra has a computable universal theory.

متن کامل

Connes’ Embedding Problem and Lance’s Wep

A II1-factor embeds into the ultraproduct of the hyperfinite II1-factor if and only if it satisfies the von Neumann algebraic analogue of Lance’s weak expectation property (WEP). This note gives a self contained proof of this fact.

متن کامل

A Computability-theoretic Reformulation of the Connes Embedding Problem

The Connes Embedding Problem (CEP) asks whether every separable II1 factor embeds into an ultrapower of the hyperfinite II1 factor. We show that the CEP is equivalent to the computability of the universal theory of every type II1 von Neumann algebra. We also derive some further computability-theoretic consequences of the CEP.

متن کامل

About the Connes Embedding Conjecture

In his celebrated paper in 1976, A. Connes casually remarked that any finite von Neumann algebra ought to be embedded into an ultraproduct of matrix algebras, which is now known as the Connes embedding conjecture or problem. This conjecture became one of the central open problems in the field of operator algebras since E. Kirchberg’s seminal work in 1993 that proves it is equivalent to a variet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the American Mathematical Society

سال: 2022

ISSN: ['0002-9904', '1936-881X']

DOI: https://doi.org/10.1090/bull/1768