The Closures of Wreath Products in Product Action
نویسندگان
چکیده
Let m be a positive integer and let ? finite set. The m-closure of G ? Sym(?) is the largest permutation group G(m) on having same orbits as in its induced action Cartesian product ?m. An exact formula for wreath given. As corollary, sufficient condition obtained this to included m-closures factors.
منابع مشابه
Primitive Subgroups of Wreath Products in Product Action
This paper is concerned with finite primitive permutation groups G which are subgroups of wreath products W in product action and are such that the socles of G and W are the same. The aim is to explore how the study of such groups may be reduced to the study of smaller groups. The O'Nan-Scott Theorem (see Liebeck, Praeger, Saxl [12] for the most recent and detailed treatment) sorts finite primi...
متن کاملThree Types of Inclusions of Innately Transitive Permutation Groups into Wreath Products in Product Action
A permutation group is innately transitive if it has a transitive minimal normal subgroup, and this subgroup is called a plinth. In this paper we study three special types of inclusions of innately transitive permutation groups in wreath products in product action. This is achieved by studying the natural Cartesian decomposition of the underlying set that correspond to the product action of a w...
متن کاملWreath Product Action on Generalized Boolean Algebras
Let G be a finite group acting on the finite set X such that the corresponding (complex) permutation representation is multiplicity free. There is a natural rank and order preserving action of the wreath product G ∼ Sn on the generalized Boolean algebra BX(n). We explicitly block diagonalize the commutant of this action.
متن کاملDistinguishing Sets under Group Actions, the Wreath Product Action
Definition 1.2 (Distinguishing number of a graph). Let Γ = (V,E) be a graph and let f : V → [r] be a coloring of the set of vertices by r colors. The map f need not be surjective, in fact when r > |V | it cannot be surjective. We say that f is r-distinguishing if the only automorphism of Γ that fixes the coloring f is the trivial automorphism. The distinguishing number of Γ is denoted by D(Γ) a...
متن کاملActions, wreath products of C-varieties and concatenation product
The framework of C-varieties, introduced by the third author, extends the scope of Eilenberg’s variety theory to new classes of languages. In this paper, we first define C-varieties of actions, which are closely related to automata, and prove their equivalence with the original definition of C-varieties of stamps. Next, we complete the study of the wreath product initiated by Ésik and Ito by ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algebra and Logic
سال: 2021
ISSN: ['1573-8302', '0002-5232']
DOI: https://doi.org/10.1007/s10469-021-09640-0