The circular chromatic index of graphs of high girth

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The circular chromatic index of graphs of high girth

We show that for each ε > 0 and each integer ∆ ≥ 1, there exists a number g such that for any graph G of maximum degree ∆ and girth at least g, the circular chromatic index of G is at most ∆ + ε.

متن کامل

Circular Chromatic Number of Planar Graphs of Large Odd Girth

It was conjectured by Jaeger that 4k-edge connected graphs admit a (2k + 1, k)-flow. The restriction of this conjecture to planar graphs is equivalent to the statement that planar graphs of girth at least 4k have circular chromatic number at most 2 + 1 k . Even this restricted version of Jaeger’s conjecture is largely open. The k = 1 case is the well-known Grötzsch 3-colour theorem. This paper ...

متن کامل

Skew Chromatic Index of Circular Ladder Graphs

Abstract. A skew edge coloring of a graph G is defined to be a set of two edge colorings such that no two edges are assigned the same unordered pair of colors. The skew chromatic index s(G) is the minimum number of colors required for a skew edge coloring of G. In this paper, an algorithm is determined for skew edge coloring of circular ladder graphs. Alsothe skew chromatic index of circular la...

متن کامل

Strong chromatic index of planar graphs with large girth

Let ∆ ≥ 4 be an integer. In this note, we prove that every planar graph with maximum degree ∆ and girth at least 10∆+46 is strong (2∆−1)-edgecolorable, that is best possible (in terms of number of colors) as soon as G contains two adjacent vertices of degree ∆. This improves [6] when ∆ ≥ 6.

متن کامل

The distinguishing chromatic number of bipartite graphs of girth at least six

The distinguishing number $D(G)$ of a graph $G$ is the least integer $d$ such that $G$ has a vertex labeling   with $d$ labels  that is preserved only by a trivial automorphism. The distinguishing chromatic number $chi_{D}(G)$ of $G$ is defined similarly, where, in addition, $f$ is assumed to be a proper labeling. We prove that if $G$ is a bipartite graph of girth at least six with the maximum ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series B

سال: 2007

ISSN: 0095-8956

DOI: 10.1016/j.jctb.2006.03.002