The chromatic Ramsey number of odd wheels

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The chromatic Ramsey number of odd wheels

We prove that the chromatic Ramsey number of every odd wheel W2k+1, k ≥ 2 is 14. That is, for every odd wheel W2k+1, there exists a 14-chromatic graph F such that when the edges of F are two-coloured, there is a monochromatic copy of W2k+1 in F , and no graph F with chromatic number 13 has the same property. We ask whether a natural extension of odd wheels to the family of generalized Mycielski...

متن کامل

Circular Chromatic Ramsey Number

Let χc(H) denote the circular chromatic number of a graph H. For graphs F and G, the circular chromatic Ramsey number Rχc(F,G) is the infimum of χc(H) over graphs H such that every red/blue edge-coloring of H contains a red copy of F or a blue copy of G. We characterize Rχc(F,G) in terms of a Ramsey problem for the families of homomorphic images of F and G. Letting zk = 3 − 2 −k, we prove that ...

متن کامل

Chromatic Ramsey number of acyclic hypergraphs

Suppose that T is an acyclic r-uniform hypergraph, with r ≥ 2. We define the (t-color) chromatic Ramsey number χ(T, t) as the smallest m with the following property: if the edges of any m-chromatic r-uniform hypergraph are colored with t colors in any manner, there is a monochromatic copy of T . We observe that χ(T, t) is well defined and ⌈ R(T, t)− 1 r − 1 ⌉ + 1 ≤ χ(T, t) ≤ |E(T )| + 1 where R...

متن کامل

The Ramsey number of paths with respect to wheels

For graphs G and H , the Ramsey number R(G,H) is the smallest positive integer n such that every graph F of order n contains G or the complement of F contains H . For the path Pn and the wheel Wm, it is proved that R(Pn,Wm) = 2n − 1 if m is even, m 4, and n (m/2)(m − 2), and R(Pn,Wm)= 3n− 2 if m is odd, m 5, and n (m− 1/2)(m− 3). © 2005 Elsevier B.V. All rights reserved.

متن کامل

The Ramsey numbers of large trees versus wheels

For two given graphs G1 and G2, the Ramseynumber R(G1,G2) is the smallest integer n such that for anygraph G of order n, either $G$ contains G1 or the complementof G contains G2. Let Tn denote a tree of order n andWm a wheel of order m+1. To the best of our knowledge, only R(Tn,Wm) with small wheels are known.In this paper, we show that R(Tn,Wm)=3n-2 for odd m with n>756m^{10}.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Graph Theory

سال: 2011

ISSN: 0364-9024

DOI: 10.1002/jgt.20575