The Cauchy problem for nonlinear elliptic equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Stability for the Cauchy Problem for Elliptic Equations *

We discuss the ill-posed Cauchy problem for elliptic equations, which is pervasive in inverse boundary value problems modeled by elliptic equations. We provide essentially optimal stability results, in wide generality and under substantially minimal assumptions. As a general scheme in our arguments, we show that all such stability results can be derived by the use of a single building brick, th...

متن کامل

Increased stability in the Cauchy problem for some elliptic equations

We derive some bounds which can be viewed as an evidence of increasing stability in the Cauchy Problem for the Helmholtz equation with lower order terms when frequency is growing. These bounds hold under certain (pseudo)convexity properties of the surface where the Cauchy data are given and of variable zero order coefficient of the Helmholtz equation. Proofs use Carleman estimates, the theory o...

متن کامل

Nonexistence Results for the Cauchy Problem for Nonlinear Ultraparabolic Equations

and Applied Analysis 3 2. Results Solutions to 1.1 subject to conditions 1.2 are meant in the following weak sense. Definition 2.1. A function u ∈ Lmloc Q ∩ L p loc Q is called a weak solution to 1.1 if ∫ Q |u|φ dP ∫ S u 0, t2;x φ 0, t2;x dP2 ∫ S u t1, 0;x φ t1, 0;x dP1 − ∫

متن کامل

On the Cauchy problem for higher-order nonlinear dispersive equations

We study the higher-order nonlinear dispersive equation ∂tu+ ∂ 2j+1 x u = ∑ 0≤j1+j2≤2j aj1,j2∂ j1 x u∂ j2 x u, x, t ∈ R. where u is a real(or complex-) valued function. We show that the associated initial value problem is well posed in weighted Besov and Sobolev spaces for small initial data. We also prove ill-posedness results when a0,k 6= 0 for some k > j, in the sense that this equation cann...

متن کامل

Bifurcation Problem for Biharmonic Asymptotically Linear Elliptic Equations

In this paper, we investigate the existence of positive solutions for the ellipticequation $Delta^{2},u+c(x)u = lambda f(u)$ on a bounded smooth domain $Omega$ of $R^{n}$, $ngeq2$, with Navier boundary conditions. We show that there exists an extremal parameter$lambda^{ast}>0$ such that for $lambda< lambda^{ast}$, the above problem has a regular solution butfor $lambda> lambda^{ast}$, the probl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinear Analysis: Theory, Methods & Applications

سال: 2009

ISSN: 0362-546X

DOI: 10.1016/j.na.2008.03.034