The Brauer group of Burnside rings

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Brauer group of Burnside rings

The Brauer group of a commutative ring is an important invariant of a commutative ring, a common journeyman to the group of units and the Picard group. Burnside rings of finite groups play an important rôle in representation theory, and their groups of units and Picard groups have been studied extensively. In this short note, we completely determine the Brauer groups of Burnside rings: they van...

متن کامل

Generalized Burnside rings and group cohomology

We define the cohomological Burnside ring B(G,M) of a finite group G with coefficients in a ZG-module M as the Grothendieck ring of the isomorphism classes of pairs [X, u] where X is a G-set and u is a cohomology class in a cohomology group H X(G,M). The cohomology groups H ∗ X(G,M) are defined in such a way that H∗ X(G, M) ∼= ⊕iH∗(Hi,M) when X is the disjoint union of transitive G-sets G/Hi. I...

متن کامل

Burnside rings

1 Let G be a finite group. The Burnside ring B(G) of the group G is one of the fundamental representation rings of G, namely the ring of permutation representations. It is in many ways the universal object to consider when looking at the category of G-sets. It can be viewed as an analogue of the ring Z of integers for this category. It can be studied from different points of view. First B(G) is...

متن کامل

Burnside-Brauer Theorem for Table Algebras

In the character theory of finite groups the Burnside-Brauer Theorem is a wellknown result which deals with products of characters in finite groups. In this paper, we first define the character products for table algebras and then by observing the relationship between the characters of a table algebra and the characters of its quotient, we provide a condition in which the products of characters...

متن کامل

Brauer Algebras and the Brauer Group

An algebra is a vector space V over a field k together with a kbilinear product of vectors under which V is a ring. A certain class of algebras, called Brauer algebras algebras which split over a finite Galois extension appear in many subfields of abstract algebra, including K-theory and class field theory. Beginning with a definition of the the tensor product, we define and study Brauer algebr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2010

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2010.06.017