The Blinder–Oaxaca Decomposition for Nonlinear Regression Models
نویسندگان
چکیده
منابع مشابه
Nonlinear Nonparametric Regression Models
Almost all of the current nonparametric regression methods such as smoothing splines, generalized additive models and varying coefficients models assume a linear relationship when nonparametric functions are regarded as parameters. In this article, we propose a general class of nonlinear nonparametric models that allow nonparametric functions to act nonlinearly. They arise in many fields as eit...
متن کاملComparison of time to the event and nonlinear regression models in the analysis of germination data
Extended abstract Introduction: Numerous studies are being carried out to reveal the effects of different treatments on the germination of seeds from various plants. The most commonly used method of analysis is the nonlinear regression which estimates germination parameters. Although the nonlinear regression has been performed based on different models, some serious problems in its structure...
متن کاملEstimation of Cardinal Temperatures for Tomato (Solanum lycopersicom) Seed Germination Using Nonlinear Regression Models
Extended Abstract Introduction: Seed germination is one of the most important factors which determine the success of failure of crop establishment. In the absence of other environmental limiting factors such as moisture, temperature would determine the rate and overall seed germination. This research was conducted to investigate the effect of temperature regimes on seed germination, quantify t...
متن کاملContinuously Additive Models for Nonlinear Functional Regression
We introduce continuously additive models, which can be motivated as extensions of additive regression models with vector predictors to the case of infinite-dimensional predictors. This approach provides a class of flexible functional nonlinear regression models, where random predictor curves are coupled with scalar responses. In continuously additive modeling, integrals taken over a smooth sur...
متن کاملKernel Quantile Regression for Nonlinear Stochastic Models
We consider kernel quantile estimates for drift and scale functions in nonlinear stochastic regression models. Under a general dependence setting, we establish asymptotic point-wise and uniform Bahadur representations for the kernel quantile estimates. Based on those asymptotic representations, central limit theorems are obtained. Applications to nonlinear autoregressive models and linear proce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Stata Journal: Promoting communications on statistics and Stata
سال: 2008
ISSN: 1536-867X,1536-8734
DOI: 10.1177/1536867x0800800402