The bifurcation measure has maximal entropy
نویسندگان
چکیده
منابع مشابه
Measures of maximal entropy
We extend the results of Walters on the uniqueness of invariant measures with maximal entropy on compact groups to an arbitrary locally compact group. We show that the maximal entropy is attained at the left Haar measure and the measure of maximal entropy is unique.
متن کاملSome Transformations Having a Unique Measure with Maximal Entropy
1. Introduction Let X be a compact metric space and T: X-> X a homeomorphism of X onto X. Let M(T) denote the collection of all T-invariant Borel probability measures on X. By Krylov and Bogolioubov's work we know M(T) is non-empty (see [10]). M{T) is a convex set and closed in the weak topology. For /x e M(T), h(T, p) will denote the measure-theoretic entropy of T with respect to p. Ifh top (T...
متن کاملC Surface Diffeomorphisms with No Maximal Entropy Measure
For any 1 ≤ r <∞, we build on the disk and therefore on any manifold, a C-diffeomorphism with no measure of maximal entropy. Résumé. Pour tout 1 ≤ r < ∞, nous construisons, sur le disque et donc sur toute variété, un difféomorphisme de classe C sans mesure d’entropie maximale.
متن کاملUniqueness of maximal entropy measure on essential spanning forests
An essential spanning forest of an infinite graph G is a spanning forest of G in which all trees have infinitely many vertices. Let Gn be an increasing sequence of finite connected subgraphs of G for which ∪Gn = G. Pemantle’s arguments (1991) imply that the uniform measures on spanning trees of Gn converge weakly to an Aut(G)-invariant measure μG on essential spanning forests of G. We show that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Israel Journal of Mathematics
سال: 2019
ISSN: 0021-2172,1565-8511
DOI: 10.1007/s11856-019-1955-6