The bias reduction in density estimation using a geometric extrapolated kernel estimator

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Relative Improvement of Bias Reduction in Density Estimator Using Geometric Extrapolated Kernel

One of a nonparametric procedures used to estimate densities is kernel method. In this paper, in order to reduce bias of  kernel density estimation, methods such as usual kernel(UK), geometric extrapolation usual kernel(GEUK), a bias reduction kernel(BRK) and a geometric extrapolation bias reduction kernel(GEBRK) are introduced. Theoretical properties, including the selection of smoothness para...

متن کامل

Using Kernel Density Estimator in Nonlinear Mixture

Generally, blind separation of sources from their nonlinear mixtures is rather difficult. This nonlinear mapping, constituted by unsupervised linear mixing followed by unknown and invertible nonlinear distortion, is found in many signal processing cases. We propose using a kernel density estimator incorporated within an equivariant gradient algorithm to separate the nonlinear mixed sources. The...

متن کامل

Estimation of Density using Plotless Density Estimator Criteria in Arasbaran Forest

    Sampling methods have a theoretical basis and should be operational in different forests; therefore selecting an appropriate sampling method is effective for accurate estimation of forest characteristics. The purpose of this study was to estimate the stand density (number per hectare) in Arasbaran forest using a variety of the plotless density estimators of the nearest neighbors sampling me...

متن کامل

Boosting Kernel Density Estimates: a Bias Reduction Technique?

SUMMARY This paper proposes an algorithm for boosting kernel density estimates. We show that boosting is closely linked to a previously proposed method of bias reduction and indicate how it should enjoy similar properties. Numerical examples and simulations are used to illustrate the findings, and we also suggest further areas of research.

متن کامل

Nonnegative bias reduction methods for density estimation using asymmetric kernels

Two classes of multiplicative bias correction (‘‘MBC’’) methods are applied to density estimation with support on [0, ∞). It is demonstrated that under sufficient smoothness of the true density, each MBC technique reduces the order of magnitude in bias, whereas the order of magnitude in variance remains unchanged. Accordingly, the mean integrated squared error of each MBC estimator achieves a f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Hacettepe Journal of Mathematics and Statistics

سال: 2016

ISSN: 1303-5010

DOI: 10.15672/hjms.201614922002