The best approximation of closed operators by bounded operators in Hilbert spaces
نویسندگان
چکیده
We solve the problem of best approximation closed operators by linear bounded in Hilbert spaces under assumption that operator transforms orthogonal basis space into an system. As a consequence, sharp additive Hardy-Littlewood-Pólya type inequality for multiple is established. also demonstrate application these results concrete situations: powers Laplace-Beltrami on classes functions defined Riemannian manifolds, differentiation period and real line with weight $e^{-x^2}$, self-adjoint spaces.
منابع مشابه
some properties of fuzzy hilbert spaces and norm of operators
in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...
15 صفحه اول$G$-Frames for operators in Hilbert spaces
$K$-frames as a generalization of frames were introduced by L. Gu{a}vruc{t}a to study atomic systems on Hilbert spaces which allows, in a stable way, to reconstruct elements from the range of the bounded linear operator $K$ in a Hilbert space. Recently some generalizations of this concept are introduced and some of its difference with ordinary frames are studied. In this paper, we give a new ge...
متن کاملSOME PROPERTIES OF FUZZY HILBERT SPACES AND NORM OF OPERATORS
In the present paper we define the notion of fuzzy inner productand study the properties of the corresponding fuzzy norm. In particular, it isshown that the Cauchy-Schwarz inequality holds. Moreover, it is proved thatevery such fuzzy inner product space can be imbedded in a complete one andthat every subspace of a fuzzy Hilbert space has a complementary subspace.Finally, the notions of fuzzy bo...
متن کاملComposition operators acting on weighted Hilbert spaces of analytic functions
In this paper, we considered composition operators on weighted Hilbert spaces of analytic functions and observed that a formula for the essential norm, gives a Hilbert-Schmidt characterization and characterizes the membership in Schatten-class for these operators. Also, closed range composition operators are investigated.
متن کاملContinuous operators on Hilbert spaces
Among all linear operators on Hilbert spaces, the compact ones (defined below) are the simplest, and most closely imitate finite-dimensional operator theory. In addition, compact operators are important in practice. We prove a spectral theorem for self-adjoint compact operators, which does not use broader discussions of properties of spectra, only using the Cauchy-Schwarz-Bunyakowsky inequality...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Carpathian Mathematical Publications
سال: 2022
ISSN: ['2075-9827', '2313-0210']
DOI: https://doi.org/10.15330/cmp.14.2.453-463