The balanced-projective dimension of abelian $p$-groups

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A NOTE ON THE COUNTABLE EXTENSIONS OF SEPARABLE p–PROJECTIVE ABELIAN p–GROUPS

Throughout this brief note all groups are assumed to be abelian p-primary, written additively as is customary when regarding the group structure. Since we shall deal exclusively only with p-torsion abelian groups, for some arbitrary but a fixed prime p, there should be no confusion in future removing the phrase ”is an abelian p-group”. Concerning the terminology, under the term a separable grou...

متن کامل

The computable dimension of ordered abelian groups

Let G be a computable ordered abelian group. We show that the computable dimension of G is either 1 or ω, that G is computably categorical if and only if it has finite rank, and that if G has only finitely many Archimedean classes, then G has a computable presentation which admits a computable basis.

متن کامل

Free Topological Groups and the Projective Dimension of a Locally Compact Abelian Group

It is shown that a free topological group on a k.space is a k.-space. Using this it is proved that if X is a k.-group then it is a quotient of a free topological group by a free topological group. A corollary to this is that the projective dimension of any k.-group, relative to the class of all continuous epimorphisms admitting sections, is either zero or one. In particular the projective dimen...

متن کامل

Finite $p$-groups and centralizers of non-cyclic abelian subgroups

A $p$-group $G$ is called a $mathcal{CAC}$-$p$-group if $C_G(H)/H$ is ‎cyclic for every non-cyclic abelian subgroup $H$ in $G$ with $Hnleq‎ ‎Z(G)$‎. ‎In this paper‎, ‎we give a complete classification of‎ ‎finite $mathcal{CAC}$-$p$-groups‎.

متن کامل

THE STRUCTURE OF FINITE ABELIAN p-GROUPS BY THE ORDER OF THEIR SCHUR MULTIPLIERS

A well-known result of Green [4] shows for any finite p-group G of order p^n, there is an integer t(G) , say corank(G), such that |M(G)|=p^(1/2n(n-1)-t(G)) . Classifying all finite p-groups in terms of their corank, is still an open problem. In this paper we classify all finite abelian p-groups by their coranks.  

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1986

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1986-0814915-0